A Communication Non-intrusive Middleware for Resource Management in Sparse MANETs

Ovidiu Valentin, DRUGAN

Department of Informatics, University of Oslo, Norway

Overview

- Introduction
- Communication Non-intrusive Resource Management
 - A non-intrusive information source
 - Prediction
 - Clustering
 - Feasibility study
- Conclusions and Future Work

Rescue Operations and Emergency Intervention

- Red Cross, 2005: " ... the flow of information throughout the disaster cycle is crucial for effective humanitarian operations ..."
- Resource Operation Specific:
 - Diverse scenes: landscape, area size, number of people, status of infrastructure, and time span
 - Heterogeneity: organizations, devices, and configurations
 - Cooperative personnel hierarchically organized
- Middleware for Rescue Operations and Emergency Intervention Ad Hoc InfoWare middleware

Ad Hoc InfoWare Middleware for Rescue Operations

- Goal: Improve the information sharing in rescue operations and emergency interventions
 - Increase the efficiency of collaborative work
- Solution: use data nétworks
 - MANETs + DTNs ≈ Sparse MANETs
 - Advantages:
 - Infrastructure independent and fast deployment
 - Mobile and heterogeneous devices
 - Disadvantages
 - Mobile and heterogeneous devices
 - Unpredictable scene layout, environment, and movements of users
 unpredictable connectivity

Ad Hoc InfoWare Middleware – Resource Management

- Resource Management
 - Balance the use and allocation of resources
 - Eliminate communication overhead and dependence on external services
 - Provide applications with information on remote resource availability

Enable adaptation to changing network configuration and capabilities of devices.

Resources & Service Placement – Example

Claims

- 1. Non-intrusiveness
 - Routing protocol holds updated information
- Neighborhood prediction
 - Past adjacency information
 - No constraints
- 3. Network *clustering*
 - Current network layout
 - No constraints
- 4. Feasible on resource constrained devices

Overview

- Introduction
- Communication Non-intrusive Resource Management
 - A non-intrusive information source
 - Prediction
 - Clustering
 - Feasibility study
 - Conclusions and Future Work

Requirements analysis for Resource Management

- General assumptions
 - Set-up phase for devices and personnel
 - Heterogeneous devices different capabilities and information
- Requirements
 - General solution (independent of routing protocol, device resource, and external service)
 - Local information
 - Preserve resources
 - Update resource information
- Worst case scenario: no external and additional information

Issues for Resource Management

- Goal: Enable composability:
 - Remote resource sharing (<u>Horizontal</u>)
 - Local resources (Vertical)
 - Resource sharing profiles (Hierarchical)
- Remote resource sharing
 - Reliable communication channel Discovering,
 Bookkeeping, Negotiation
 - Un-reliable communication channel → Resource Availability (e.g., link-lifetime)
 - Graceful degradation, Resource planning, Timed-soft-state-like reservations

Resource Management

- Algorithm: Link-lifetime Estimation
 - Classical: Global Positioning System (GPS)
 - Problems: imprecise measurements or lack of GPS coverage, physical proximity is not a guarantee of connectivity, needs information dissemination
 - Past Link-lifetime
 - Advantages: local information with no assumption on link-lifetime duration
- Algorithm: Network Clustering
 - Classical: Predefined number of clusters or cluster size
 - Problems: Dynamic of the network (number of nodes, connectivity, etc.)
 - Community Detection
 - Advantages: local information with no assumption on number of nodes in a cluster, number of clusters, network size and layout
- Pros: no assumption on location, no communication overhead
- Cons: more complicated algorithms, dependent on the accuracy of the information source

Information flow of Resource Management

Overview

- Introduction
- Communication Non-intrusive Resource Management
- A non-intrusive information source
- Prediction
- Clustering
- Feasibility study
- Conclusions, and Future Work

Foundation for a non-intrusive RM

- Information Source: Routing table in the routing protocol
 - Advantages
 - Updated view of the network,
 - Location independent
 - Disadvantages
 - Sensitive to existence of communication
 - Sensitive to mobility and communication patterns
 - Partial topology of the network
 - Information type:
 - Neighborhood
 - Topology
 - Issues: accuracy and consistency

Test environment

<u>Mobility</u> <u>Model</u>	Single mobility models: Random Direction Mobility, Random Walk Mobility, Steady-State Random Waypoint Group mobility models: Random Point Group Mobility Other simulators: RoboCupRescue Simulation Project	
Network simulator	GloMoSim	Reactive Routing protocol: AODV
		Proactive Routing Protocol: <i>OLSR</i>
Communication	Flat: a random subset of the nodes are transmission sources	
	Structured: follows the group structure	

General

- -40 nodes (4 groups)
- A=800x600u, T=18000s
- radius=100u,
- item=2048b,
- $-v=1\div7u/s$

Communication

- Flat: tr_src>25%, per=50s
- Structured:
 - Leaders: tr_src=10%, per={30s,60s}
 - Group Nodes: tr_src>50%, per=30s

Neighborhood Connectivity Periods

- Issue: Accuracy of neighbor information in route table
- Question: Are neighbor periods similar in the scene (mobility model) and the routing protocol?
- Solution: Discrete time (routing protocol) approximate continuous time to time periods: Neighbor or Non-Neighbor (n_1, n_2)
 - Aggregate timestamps of direct contact between a pair of nodes

• Interval
$$[0, T_{sim}]$$
 where $0 \le t_1 < \ldots < t_k \le T_{sim}$

$$T_{\sup} = \left\{ t_{i+1} \middle| t_{i+1} - t_i > \sigma \right\} \cup \left\{ T_{\sup} \right\} \quad T_{\inf} = \left\{ 0 \right\} \cup \left\{ t_i \middle| t_{i+1} - t_i > \sigma \right\} \quad \sigma - time \ treshold \ \text{Neighbor time periods}$$

$$C = \left\{ \begin{bmatrix} t_i, t_j \end{bmatrix} t_i \in T_{\text{inf}}, i = \left\{ 1, \dim \left(T_{\text{inf}} \right) - 1 \right\}, t_j \in T_{\text{sup}}, j = \left\{ 2, \dim \left(T_{\text{sup}} \right) \right\} \right\}$$

Non-neighbor time periods

$$D = \{ (t_i, t_j) | t_i \in T_{\text{inf}}, t_j \in T_{\text{sup}}; i, j = \{1, \dim (T_{\text{inf}}) \} \}$$

Timestamp Neighbor

Neighbor Period [1,2],4,[6,7],10Non-Neighbor Period (0,1),(2,4),(4,6),(7,10)

Timestamp Non-Neighbor

RoboCupRescue – Distribution of Connectivity Periods

Group Connections – Flat

Result: The neighbor periods have the same distribution for mobility models and routing protocols.

Topology Data Consistency

- Issue: Topology consistency (i.e., nodes may have different topology information)
- Question: How consistent is the topology information at the different nodes?
- **Solution**: Compare topology information on all the node in the network
 - Compute the Hamming Distance between topologies (count the differences between the adjacency matrixes of different nodes)
- **Result**: Similar topologies, if node are connected.

Overview

- Introduction
- Communication Non-intrusive Resource Management
 - A non-intrusive information source

- Prediction
- Clustering
- Feasibility study
- Conclusions and Future Work

Prediction Algorithm

- Question: Is the neighborhood of a node predictable?
- Idea: Neighborhood estimation algorithm based on routing information

 - Discrete timestamps approximate continuous time

 Neighbor or Non-Neighbor Periods
- Algorithm: <u>SIR Future Neighbor</u>
 - Window in a data stream (data process model)
 - Changes of direct connectivity between pairs of nodes
 - Sequential Monte Carlo (estimation method)
 - Estimates the future state of a node's neighborhood
 - No assumptions on: Links' lifetime and Nodes' movement

Window in a data stream

- Solution: Neighborhood window
 - Mapping from the time domain T to the domain of possible time intervals Ts $\Psi: T_s \to \{[t_1, t_2] | t_1, t_2 \in T, t_1 \leq t_2\}$
 - Aggregate timestamps of direct contact between two nodes
 - State of the pair (n_1, n_2) during an interval $[t_j, t_{j+1}]$ where $\min(\psi(t)) \le t_1 < \ldots < t_k \le \max(\psi(t))$ and $\psi(t) = [\min(\psi(t)), \max(\psi(t))]$ Neighbor time period $\sum_{(n_1, n_2)}^{k-1} \sum_{j=1}^{k-1} (1-j) \sum_{j=1}^{k-1} (1-j)$
 - Neighbor time period $C_{\Psi(t)}^{(n_1,n_2)} = \sum_{j=1}^{k-1} \left(t_{j+1} t_j\right) \quad if \quad t_{j+1} t_j \le \sigma \quad \sigma time \ treshold$
 - Non-neighbor time period $D_{\Psi(t)}^{(n_1,n_2)} = (\max(\Psi(t)) \min(\Psi(t))) C_{\Psi(t)}^{(n_1,n_2)}$
- Assumptions: Distributions of periods are non-linear / non-Gaussian

Neighbor Time

1

Non-Neighbor Time

Sequential Monte Carlo (SMC)

- Recursive Bayesian Tracking: Represent the posterior density function by a set of random samples with associated weights and compute the estimates based on samples and weights
- SMC for the neighbor pair (n_1, n_2)
 - Recursively calculate the degree of belief in the estimation x_{τ_k} for the next window interval τ_k taking into consideration the values of the current measurements $z_{\tau_{ik}}$
 - Predict: use previous measurements for prior $p(x_{\tau_k} \mid z_{\tau_{1k-1}})$
 - Update: likelihood function $p(z_{\tau_k} \mid x_{\tau_k}) \rightarrow$ prior distribution $p(x_{\tau_k} \mid z_{\tau_{1k}})$

Sampling Importance Resampling (SIR)

 $\left\{ \begin{matrix} x_{\tau_{k-1}}^{i}, N_{s}^{-1} \\ x_{\tau_{k-1}}^{i}, w_{\tau_{k-1}}^{i} \end{matrix} \right\}_{i=1}^{N_{s}}$ $\left\{ \begin{matrix} x_{\tau_{k-1}}^{i}, w_{\tau_{k-1}}^{i} \end{matrix} \right\}_{i=1}^{N_{s}}$ $\left\{ \begin{matrix} x_{\tau_{k-1}}^{i}, N_{s}^{-1} \\ x_{\tau_{k}}^{i}, N_{s}^{-1} \end{matrix} \right\}$

 $\{x_{\tau_k}^i, w_{\tau_k}^i\}_{i=1}^{N_s}$

©Doucet, de Freitas, Gordon

 $i = 1, \dots, N_s = 20$ particles

Tumbling Window – SIR Future Neighbor

Result: The estimated values are close to the measured and "true" values.

Window type: Tumbling \rightarrow Estimate a value between o and ϕ

$$C_{\Psi(t)}^{(n_1,n_2)}, D_{\Psi(t)}^{(n_1,n_2)} \in [0,\phi]$$

 $\phi = 60$

Euclidian Distance

Prediction Discussions

- Window Size (φ) vs. Time Step (β)
 - Gives the type of window, Impacts the performance and resources required, β does not influence accuracy
- Reactive routing protocol
 - No communication → No accuracy
 - Windowing techniques can filter small communication pauses
- Linear Cost with Number of Samples (Ns)
 - Number of Samples (Ns) and Time Step (β): Large $\beta \rightarrow$ Large Ns
 - Number of Samples (Ns) and Number of neighbors: High number of neighbors → High computation cost
- Run continuously
 - Adapts to the behavior of the neighborhood, Correct after a few estimations
 - No on-demand estimations

Overview

- Introduction
- Communication Non-intrusive Resource Management
 - A non-intrusive information source
 - Prediction

- Clustering
- Feasibility study
- Conclusions and Future Work

Temporary services

- Question: Where to place services in the network?
- Issue: Minimize the distance to resources in order to balance the use of resources
 - Requirements
 - Management overhead independence
 - Position independence
 - Solution: Temporary Clustering with dynamic clustering methods (i.e., consider the dynamic in the network)
 - Clustering which adapts to the current network layout
 - Adaptive number of clusters
 - Unconstrained number of nodes in a cluster
 - Temporary service positioning: Number of data replica and services, Data and service placement, Network partitioning
 - Problem: No methods to handle dynamics issues of MANETs

Passive Clustering

- Idea: Clustering based on the network topology in the route table
- Methods: use static networks algorithms
 - Clustering: Community Detection
 - Divide or agglomerate to detect the groups of nodes in the network with dense network connections, and sparse connections outside the groups
 - 1. Newman and Grivan 2004 (<u>Recursive</u>) where recursively eliminates the links with high weight in the network
 - 2. Reichard and Bornholdt 2006 (<u>SpinGlass</u>) where community membership of a node is determined by its neighborhood (i.e., number of neighbors and neighbors' membership)
 - Placement: Cluster head election based on centrality measures
 - Coverage: Network Voronoi Node Diagram
 - For nodes in a given set it defines: dominance set and bisector set nodes
 - Evaluation: measure quality, stability, similarity, and consistency

Clustering Evaluation: Quality

- **Question**: Is the clustering valid?
- Measure: Silhouette index (how well is a node clustered considering its distance to the center and of the center of the closest cluster)

Node: $s(p_i) = \frac{\overline{d}(p_i, C_h) - \overline{d}(p_i, C_j)}{\max(\overline{d}(p_i, C_h), \overline{d}(p_i, C_i))}$ Cluster: $S_j = \frac{\sum_{i=1}^{N_j} s(p_i)}{N_j}$

Network:

Results: The created clusters are good.

Clustering Evaluation: Stability

- Question: Is the clustering stabile?
- Measure: Stability quantifies the changes of the clustering with respect to the new network structure (i.e., establishment and breakage of links, and quality increase and decrease cluster membership)

Delay the clustering $S_i = \left[\frac{Q_i + F_i}{B_i + E_i}\right] * \frac{1}{\delta t}$

• Results: Delayed clustering can improve the stability of the clusters.

Clustering Evaluation: Similarity

- Question: What is the difference between different clusterings?
- Measure: The similarity measures the variation of information between clustering over the same network
 - SpinGlass vs. Recursive
 - The methods return similar clustering, i.e., in the interval o and o.8
 - SpinGlass vs. Voronoi and Recursive vs. Voronoi
 - The Voronoi Diagrams are also similar to the clustering's, i.e., in the interval 0.1 and 0.9
- Result: The different clustering techniques produce similar results.

Clustering Evaluation: Consistency

Question: Are the clusters consistent in the network?

Measure: Damereau-Levenshtein Distance between detected communities at different nodes (i.e., no. of insertions, deletions, substitutions of single characters, and transpositions between two sets)

Results: Communities are similar at different nodes.

Clustering Discussion

- Topology information
 - Does not apply for reactive routing protocols
 - Requires a consistent view of the topologies at the nodes
- Clustering measures
 - Not for dynamic networks
 - Quality
 - Not a general accepted metrics
 - Different metrics may give contradicting conclusions
 - Stability
 - Does not consider the changes in the number of clusters
 - Does not consider the changes in the number of nodes in the network
 - Similarity:
 - Not applicable to clustering from different nodes in the network
 - Consistency
 - Detected communities are more consistent than elected cluster heads

Overview

- Introduction
- Communication Non-intrusive Resource Management
 - A non-intrusive information source
 - Prediction
 - Clustering

- Feasibility study
- Conclusions and Future Work

Implementation – Nokia 770 Internet Tablet

SIR Future Neighbor

- Values
 - Footprint 28kb
 - Routing protocol: OLSRD
 - $\beta = \phi = \{30,60,120,300\}$
 - Ns= 20, T = 5200
 - Number of nodes = 5 25,
 Simulated neighborhood change every 4 s
- Computation time per step
 - Tumbling Window process ~
 0.03 2 ms
 - SIR Future Neighbor process
 ~ 2 40 ms

Result: Possible to run on resource constraint devices.

Image from www.nokia.com

- Network Voronoi Node Diagrams
 - Values
 - Footprint 38.5kb
 - Routing protocol: OLSRD
 - Number of nodes = 10 15,
 Number of clusters = 2 4

Overview

- Introduction
- Communication Non-intrusive Resource Management
 - A non-intrusive information source
 - Prediction
 - Clustering
 - Feasibility study
- Conclusions and Future Work

Conclusions

- Thesis contributions
 - Middleware architecture for RM in Sparse MANETs
 - Information service for worst case scenario to deliver updated availability of remote services and resources
 - Communication non-intrusive algorithms for prediction and clustering
- Thesis claims: Critical review
 - 1. Non-intrusiveness
 - Good if the node is involved in communication
 - Neighborhood prediction
 - Non-intrusive is possible
 - Dependent on communication
 - Cannot perform timely predictions
 - 3. Network Clustering
 - Community detection gives good results
 - Can benefit from delaying the process
 - Only for proactive protocols
 - Feasible on resource constrained devices

Future Work

- Integrate higher level information
- Timely predictions
- Clustering for reactive protocols
- Use predictions and adaptive clustering techniques (which support the dynamics of the network)
- Apply the algorithms to delay tolerant streaming
- Evaluate with real mobility and communication traces
- Evaluate during a rescue exercise

