

Overlay/Underlay Routing Issues in Wireless Mesh Networks

Stefano Avallone, Roberto Canonico, Francesco Paolo D'Elia

CONTENT: Workshop Video Streaming over MANETs

18-19 December 2008 Computer Architecture Department Tecnical University of Catalonia (UPC) Barcellona, Spain

P2P traffic control and management

More than 50% of Internet traffic is generated by P2P applications

The need for overlay networks

P2P applications create overlay networks in order to:

Provide services like file sharing and video streaming

Overlay networks are unaware of the underlay topology

Overlay/Underlay Routing Instability

Overlay routing goals:

- High bandwidth for file transfer
- End-to-end latency optimization

Underlay routing goals:

- Network domain load balancing
- Minimization of link utilization and inter-AS traffic

Duplication of routing functionalities and collision in optimization objectives lead to

ROUTE INSTABILITY

Overlay/Underlay Inefficiency

- ISPs are unable to perform an efficient traffic engineering due to the inability to control traffic and to influence the peer selection mechanism
- Overlay are not able to build an optimal topology, since they ignore physical topology
- Overlay networks indipendently perform network metrics measurements

Overlay/Underlay cooperation: The Oracle

The Oracle is a service supplied by the ISP to the overlay P2P users:

- Information is provided, like link delay, bandwidth estimations, etc.
- As input, a list of P2P nodes sharing a known content is given and the list of nodes ranked according to different performance metrics is returned
- P2P applications will not have to perform such measurements by themselves
- The Oracle gives ISPs a way to control overlay routing
- Underlay to overlay information exchange improves overlay operations and underlay network usage

V. Aggarwal, A. Feldmann, C. Scheideler, Can ISPs and P2P systems co-operate for improved performance?. In ACM SIGCOMM Computer Communications Review (CCR), 37:3, pp. 29-40, July 2007

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Overlay/Underlay cooperation: The Oracle

Open issues:

- Metric definition
- Communication and coordination between different ISP is needed for optimal inter-AS paths
- Impact on topology creation
- Architectural structure definition

V. Aggarwal, A. Feldmann, C. Scheideler, Can ISPs and P2P systems co-operate for improved performance?. In ACM SIGCOMM Computer Communications Review (CCR), 37:3, pp. 29-40, July 2007

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Overlay/Underlay cooperation: ALTO Working Group

Application Layer Traffic Optimization

Motivation:

• Standardize information exchange between applications and ISPs in order to help in peer selection

Objective:

- Optimize performance in the application while minimizing resource consumption in the underlaying network infrastructure
- Avoid overlay nodes overhead traffic due to independent performance sensing operations

http://www.ietf.org/html.charters/alto-charter.html

Overlay/Underlay cooperation: ALTO Working Group

Possible rating criteria:

- Topological distance, e.g., AS hop count, or whether peer is reachable via its own network
- Expected cost for data transport

Criteria that should not be used:

Performance metrics related to instantaneous congestion status

http://www.ietf.org/html.charters/alto-charter.html

Overlay/Underlay cooperation: P4P Working Group

Provider Portal for Applications

Framework:

- Cooperative traffic control between application and underlying network
- Explicit cooperation between P2P and ISP
- Several interfaces provided to networks in order to communicate with applications regarding:
 - Network capabilities
 - Distances between nodes in terms of provider policy and network status

H. Xie, R. Yang, A. Krishnamurthy, Y. Liu, A. Silberschatz, *P4P: Provider Portal for Applications*. ACM SIGCOMM Computer Communications Review (CCR), 38:4, pp. 351-362, October 2008

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Overlay/Underlay cooperation: P4P Working Group

Core Group	Observers
 AT&T Bezeq International BitTorrent Velocix Cisco Systems Grid Networks Joost Limewire Manatt Oversi Pando Networks PeerApp Telefonica Group Verisign Verizon Vuze Washington University Yale University 	 Abacast AHT International Alcatel Lucent CableLabs Cablevision Comcast Cox Communications Juniper Networks Microsoft MPAA NBC Universal Nokia RawFlow Solid State Networks Thomson Time Warner Cable Turner Broadcasting

http://www.pandonetworks.com/p4p

Underlay layer

Wireless Mesh Networks

Wireless Mesh Networks:

- Absence of wired infrastructure, exception made for Internet gateways
- Easy deployment

Frequency sharing leads to communication interference:

- Multi-radios are needed to alleviate the problem
- Multi-channel assignment involving each radio on each node

Why is Overlay/Underlay

cooperation more critical in WMNs?

Overlay nodes generate probe messages:

Overhead traffic is more critical due to interference

Overlay network topology criticality:

Presence of Internet gateways represents strong bottleneck

WMN network optimization strictly dependent on traffic profile:

Otherwise poor usage of resources and lower throughput

A new approach:

Bidirectional Crosslayering

Overlay applications get information from the underlay network:

- ISPs are the only knowledgeable sources of information about underlay networks
- Help in topology creation
- AS bounds respected
- Decrease in overlay sensing overhead traffic

Underlay routing gets information from the applications:

- Channel assignment optimization
- Throughput improvements all over the WMN

Crosslayer information flow in Wireless Mesh Networks

For WMN, Oracle-like strategies may not be sufficient:

- WMN configuration is sensible to traffic demands.
- Poor performance may be obtained if channel assignment configuration is static and it is not adapted to the new traffic flows
- A new architecture is needed

Possible solutions to apply Oracle-like strategies to WMN:

- P2P applications should send list of neighbors to WMN routers TOGETHER with information about bandwidth requirements
- Mesh routers analyze the overlay requirements and, based on the underlay network situation, can:
 - Dinamically reassign channel
 - Sort the overlay neighbor list and send it back to the overlay user

Result:

Overlay and Underlay networks optimization

Research directions:

Architectural design of the new crosslayer structure

- Communication between application layer and underlying wireless network
- How to and where to deploy the overlay/underlay "oracle" functionalities
- Parameters have to be defined in order to rank the list

Research directions:

- The underlaying network reconfiguration phase should take into consideration the following parameters:
 - The churn activity of P2P users, through statistical modelling and measurements
 - Underlying network degree of optimization after the possible reoptimization should be predicted
 - Based on the P2P churn past history and possible underlay performance improvements, underlay reconfiguration is taken into consideration:
 - If traffic variation is high, total reconfiguration may be considered
 - For low traffic variation just forwarding paradigm reconfiguration may be considered

Research directions:

Wireless Mesh Network routing protocol:

- should consider the bandwidth available on every link as a result of the computed channel assignment
- should be robust to minor variations in the traffic offered to the network, in order to maintain the network performance at an acceptable level
- should be able to rapidly react to temporary link unavailability or quality degradation, which may often occur in wireless environments

Research directions:

- Introduce new metrics to describe as close as possible the P2P user traffic demand
- Study new churn models in order to "predict" the ephemeral network reconfigurations
- Study the feasability of dynamic channel allocation, characterizing the time constant
- Simulation and realistic testbed implementation

Conclusions

Overlay/Underlay interaction is critical:

- Oracle-like solutions are proposed
- The problem is under consideration and Working Groups have been formed

Overlay/Underlay interaction in Wireless Mesh Networks:

- Interaction is even more critical and Oracle-like solutions are not sufficient
- A new architecture is needed:
 - Applications and mesh routers have to continuously exchange information between each other
 - WMN have to reconfigure themselves in order to adapt to new traffic demands

Thank You

Questions?

