In the current Internet typically live video streaming services operate at the application layer (e.g, P2P Live) and not at the network layer. The main reason for this is that multicast is not widely available in core-routers due to its high deployment and operational costs. In this project we aim to develop Lcast, a new multicast protocol that takes advantage of LISP, and therefore avoids deployment in these core-routers.
12 month
UPC, Cisco
Unsolicited Research Proposal Cisco Grant
Project Website: http://cba.upc.edu/lcast
LISPmob is an open-source LISP Mobile Node implementation for Linux. With LISPmob, hosts can change their network attachment point without losing connectivity, while maintaining the same IP address.
Funding: Cisco Open Source Microgrants
12
Universitat Politècnica de Catalunya (UPC), Cisco, community
Cisco URP Grant
Project Website: http://lispmob.org/
We aim to design the fundamental building block of a network monitoring infrastructure that allows researchers and network operators to process and share network data across multiple sites. CoMo supports i) arbitrary traffic queries that run continuously on the live data streams, ii) retrospective queries that analyze past traffic data to enable network forensics.
Data streams may have different formats (e.g., packet sequences, flow summaries, etc.) and originate from different platforms (e.g, passive link monitors, routers, wireless access points, etc.). CoMo can operate in the presence of different devices and data sources and provide a unified data interface to queries. Multiple CoMo systems will also cooperate to rapidly disseminate queries throughout the network of monitors, allowing operators to "drill down" to relevant data locations in the network.
12
Intel Research Cambridge
Project Website: http://como.sourceforge.net/
40
Fundació i2CAT
SMARTxAC is a project carried out under a collaboration agreement between the Advanced Broadband Communications Center (CCABA) of the Technical University of Catalonia (UPC) and the Supercomputing Center of Catalonia (CESCA).
SMARTxAC aims to develop and deploy a passive measurement infrastructure and a real-time analysis system for high-speed links. Currently, SMARTxAC is being used for capturing and analyzing the traffic of the Anella CientÃfica (Scientific Ring). The Anella CientÃfica is the name of the Catalan R&D Network, which is managed by CESCA and connects about 50 Universities and Research Centers in Catalonia.
The tapped link is built from a pair of GigE links (one for each traffic direction) that connect the Anella CientÃfica to RedIRIS (Spanish R&D network) and to the global Internet. Current traffic volume on this link is about 600 Mbps and it is increasing day after day, so that data collection is facilitated by an Endace DAG 4.3GE measurement card. Full-traffic analysis at full-line rate is performed in real-time using the SMARTxAC analysis software developed at the Advanced Broadband Communications Center (CCABA) of the UPC.
A three hours GPS-synchronized and anonymized IP header trace was captured for the NLANR/PMA project in February 2004 using the capture point and collection platform in the Anella CientÃfica. This data set was published and can be downloaded at CESCA-I section of NLANR/PMA website.
undefined (since 2003)
UPC, CESCA
Project Website: http://cba.upc.edu/smartxac